sklearn线性回归实现房价预测模型

题目要求

建立房价预测模型:利用ex1data1.txt单特征)和ex1data2.txt多特征)中的数据,进行线性回归和预测。

作散点图可知,数据大致符合线性关系,故暂不研究其他形式的回归。

两份数据放在最后。

单特征线性回归

ex1data1.txt中的数据是单特征,作一个简单的线性回归即可:$y=ax+b$。

根据是否分割数据,产生两种方案:方案一,所有样本都用来训练和预测;方案二,一部分样本用来训练,一部分用来检验模型。

方案一

对ex1data1.txt中的数据进行线性回归,所有样本都用来训练和预测。

代码实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
"""
对ex1data1.txt中的数据进行线性回归,所有样本都用来训练和预测
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

# 数据格式:城市人口,食品经销商利润

# 读取数据
data = np.loadtxt('ex1data1.txt', delimiter=',')
data_X = data[:, 0]
data_y = data[:, 1]

# 训练模型
model = LinearRegression()
model.fit(data_X.reshape([-1, 1]), data_y)

# 利用模型进行预测
y_predict = model.predict(data_X.reshape([-1, 1]))

# 结果可视化
plt.scatter(data_X, data_y, color='red')
plt.plot(data_X, y_predict, color='blue', linewidth=3)
plt.xlabel('城市人口')
plt.ylabel('食品经销商利润')
plt.title('线性回归——城市人口与食品经销商利润的关系')
plt.show()

# 模型参数
print(model.coef_)
print(model.intercept_)
# MSE
print(mean_squared_error(data_y, y_predict))
# R^2
print(r2_score(data_y, y_predict))

结果如下:

由下可知函数形式以及$R^2$为0.70

1
2
3
4
[1.19303364]
-3.89578087831185
8.953942751950358
0.7020315537841397

ex1data1_1.png

方案二

对ex1data1.txt中的数据进行线性回归,部分样本用来训练,部分样本用来预测。

实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
对ex1data1.txt中的数据进行线性回归,部分样本用来训练,部分样本用来预测
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

# 数据格式:城市人口,食品经销商利润

# 读取数据
data = np.loadtxt('ex1data1.txt', delimiter=',')
data_X = data[:, 0]
data_y = data[:, 1]

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(data_X, data_y)

# 训练模型
model = LinearRegression()
model.fit(X_train.reshape([-1, 1]), y_train)

# 利用模型进行预测
y_predict = model.predict(X_test.reshape([-1, 1]))

# 结果可视化
plt.scatter(X_test, y_test, color='red') # 测试样本
plt.plot(X_test, y_predict, color='blue', linewidth=3)
plt.xlabel('城市人口')
plt.ylabel('食品经销商利润')
plt.title('线性回归——城市人口与食品经销商利润的关系')
plt.show()

# 模型参数
print(model.coef_)
print(model.intercept_)
# MSE
print(mean_squared_error(y_test, y_predict))
# R^2
print(r2_score(y_test, y_predict))

结果如下

由下可知函数形式以及$R^2$为0.80

1
2
3
4
[1.21063939]
-4.195481965945055
5.994362667047617
0.8095125123727652

ex1data1_2.png

多特征线性回归

ex1data2.txt中的数据是二个特征,作一个最简单的多元(在此为二元)线性回归即可:$y=a_1x_1+a_2x_2+b$。

对ex1data2.txt中的数据进行线性回归,所有样本都用来训练和预测。

代码实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
对ex1data2.txt中的数据进行线性回归,所有样本都用来训练和预测
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from mpl_toolkits.mplot3d import Axes3D # 不要去掉这个import
from sklearn.metrics import mean_squared_error, r2_score
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

# 数据格式:城市人口,房间数目,房价

# 读取数据
data = np.loadtxt('ex1data2.txt', delimiter=',')
data_X = data[:, 0:2]
data_y = data[:, 2]

# 训练模型
model = LinearRegression()
model.fit(data_X, data_y)

# 利用模型进行预测
y_predict = model.predict(data_X)

# 结果可视化
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(data_X[:, 0], data_X[:, 1], data_y, color='red')
ax.plot(data_X[:, 0], data_X[:, 1], y_predict, color='blue')
ax.set_xlabel('城市人口')
ax.set_ylabel('房间数目')
ax.set_zlabel('房价')
plt.title('线性回归——城市人口、房间数目与房价的关系')
plt.show()

# 模型参数
print(model.coef_)
print(model.intercept_)
# MSE
print(mean_squared_error(data_y, y_predict))
# R^2
print(r2_score(data_y, y_predict))

结果如下:

由下可知函数形式以及$R^2$为0.73

1
2
3
4
[  139.21067402 -8738.01911233]
89597.90954279748
4086560101.205658
0.7329450180289141

ex1data2.png

两份数据

ex1data1.txt

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705

ex1data2.txt

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
2104,3,399900
1600,3,329900
2400,3,369000
1416,2,232000
3000,4,539900
1985,4,299900
1534,3,314900
1427,3,198999
1380,3,212000
1494,3,242500
1940,4,239999
2000,3,347000
1890,3,329999
4478,5,699900
1268,3,259900
2300,4,449900
1320,2,299900
1236,3,199900
2609,4,499998
3031,4,599000
1767,3,252900
1888,2,255000
1604,3,242900
1962,4,259900
3890,3,573900
1100,3,249900
1458,3,464500
2526,3,469000
2200,3,475000
2637,3,299900
1839,2,349900
1000,1,169900
2040,4,314900
3137,3,579900
1811,4,285900
1437,3,249900
1239,3,229900
2132,4,345000
4215,4,549000
2162,4,287000
1664,2,368500
2238,3,329900
2567,4,314000
1200,3,299000
852,2,179900
1852,4,299900
1203,3,239500

作者:@臭咸鱼

转载请注明出处:https://www.cnblogs.com/chouxianyu/

欢迎讨论和交流!